Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001

Angle-resolved photoemission study of heavy-fermion cerium compounds CeRhIn₅ and CeIrIn₅

Shin-ichi Fujimori¹, Akihiro Ino¹, Tetsuo Okane¹, Atushi Fujimori^{1,2}, Hisatomo Harima³, Dai Aoki⁴, Yoshihumi Tokiwa⁵, Shuugo Ikeda⁵, Hiroaki Shishido⁵, Yoshinori Haga⁶, Yoshichika Ōnuki⁵.⁶

- Synchrotron Radiation Research Center, Japan Atomic Energy Research Institute, SPring-8, Mikazuki, Hyogo 679-5148, Japan
- Department of Physics, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- ³ Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0043, Japan
- ⁴ DRFMC-SPSMS, CEA, 38054 Grenoble Cedex 9, France
- ⁵ Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- ⁶ Advanced Science Research Center, Japan Atomic Energy Research Institue, Tokai, Ibaraki 319-1195, Japan

Recently, two new ternary Ce-based heavy-fermion compounds CeRhIn₅ and CeIrIn₅ were synthesized. Both of them have tetragonal HoCoGa₅ structure, and their electronic structures are considered to be quasi-two-dimensional. Especially, it is reported that CeRhIn₅ is a pressure-induced superconductor*. In the present study, the electronic states of these two compounds are investigated by high-resolution angle-resolved photoelectron spectroscopy. The results are compared with the results of the FLAPW band structure calculations.

^{*}H. Hagger et al., Phys. Rev. Lett. 84, 4986 (2000).